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A STOCHASTIC REPRESENTATION FOR THE PRINCIPAL EIGENVALUE

OF A SECOND-ORDER DIFFERENTIAL EQIJATION~

Ioannis Kara tzas

Abs trac t

Using ideas from stochastic control we derive a stochastic

represen tation for the smalles t eigenvalue of a second-order

differential equation . As a side-result we solve an associated

stationary control problem in a very general setting.
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1. INTRODUCTION AND SUMMARY

In the present paper we obtain a stochastic representation

for the principal eigenvalue X~ of the eigenvalue problem

z”(x) + 2(A -~~(x))z(x) = 0, in iR (1)

with z(.) even and $(.) a positive , even , C~ and convex

function on the reals , growing like ~
2m , m > 1 to infinity as

lx i -
~~ ~~ . Under these assumptions on 4(•) there exists a discrete

spectrum for problem (1) (see Titchmarsh [15], vol. l aid

Coddington and Levinson (2]), with eigenvalues 0 < A~ A <

< A~ < • . . ,  A~ as n and corresponding eigenfunctions

z~ (x) € L
2(0,c°), n E I N , having exactly n zeros on (0,~ ) .  We

prove that A admits the representation

= - u r n  in EExP{~
J4 (x+w s)ds~~ 

(2)

for any x € ]R, where {w
~
; t > 0) is a Brownian Motion process

on an underlying probability space (c~,g,P) and E denotes

expectation with respect to P.

The method proceeds by considering a stationary stochastic

control problem associated in some natural way with equation (1),

along with the corresponding family of finite-horizon optimization

problems . It is proven that is the optimal asymptotic performance

rate for the stathnary control problem . A major step is then to

show that V(x,t), the optimal expected performance for the control

-
/ z~~
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problem on the finite time interval [0,1], satisfies the limiting

relationship

u r n  V ( x , T) 
= A~~, any x € 1k

(Theorem 1). Equation (2) follows from a Feynman-Kac-type stochastic

representation for V(x,T). On the other hand , a candidate for the

optimal law in the stationary problem is discerned from the corre-

spondiug Bellman equation and its optimality against any admissible

nonanticipative law is established by means of the aforementioned

limiting relationship.

Donsker and Varadhan [3] and Holland [8,9] obtained different

representations for the smallest eigenvalue of second-order elliptinc

differential operators in bounded domains under natural or Dirichiet

boundary conditions . Holland [9), in particular , establithed a

generalized Rayleigh-Ritz formula in this setting, using ideas from

stationary stochastic control. His method did not , however, invoke

the corresponding finite-horizon problems . Stationary control

problems were studied in some generality by Wonham [16] and Kushner

[11). Both restr ic ted a t tent ion to laws producing an ergodic

dif fus ion process. For an example of a stationary control problem

in which general nonanticipative laws are admitted , see Bene~ and

Karatzas [1].

2. THE STATIONARY CONTROL PROBLEM

Denote by z *( .)  the corresponding to A~ ei genfunction of

equation (1), normalized so that J (z *(x )) 2dx 1. The change of 

~~~~~~~~~~~~~~~~~~~~~ 
l~~~; 

-.--- 
- 
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variables z~
’ = exp(-v), v ( .)  an even, positive function on 1k,

yields the equation

* 1 1 2  -A = -
~~

- v
~~
(x) - 

~~ 
v~(x) + P (x), in 1k. (3)

Note that - 
~~

- v~ = min(u .v
~ 

+ 
~~
. u2), the minimum being achieved by

u~ = -vs. It becomes transparent that (3) is the Bellman equation

for a stationary control problem - see Wonham [16] - to be intro-

duced in detail below .

Consider the space C[0,T} of real-valued , continuous functions

on [0,T], some I > 0, and let 0 < t < I denote the -field

of subsets of C[0 ,T] generated by {x; x € C[0,T], s < t}

Consider also the a-field .~~~~ of subsets D of [0,T] X C[ 0,T]

with the property that , for any 0 < t < T, the section Dt belongs

to 
~~~~~

, and that each x-section Dx, x € CI0 ,T] is Lebesgue-

measurable.

Definition 1: An admissible nonanticipative control law u is a

measurable function

u: ([0,T] x C[0,T), ~) + OR,B) 

~~~~~~~~~~such that the stochastic differential ~~~~~~~~~~~~~~~~

dxt = ut (x)dt + dw
~

.4 ~~ t,. . C )
x = x t. ~~~~~~ 

. .--•

- 

~~~~0 

_ _  _ _  
- ~I ,

_

~~~
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have a unique (in the sense of the probability law) weak solution

{(xt,wt); 0 < t < T) on some probability space (~2, $~ ,P~ ; $~),

for any x € 1k, with 1w
~
; t > 0 } an $~-adapted Brownian

Motion process and

E~ J Iu t(x) l~
dt < ~ (5)

0

sup E (x (~ < (6)
0<t<T

holding for any p > 0. Let ~ denote the class of all admissible

nonanticipative control laws .

For instance , if u is bounded such a solution can be con-

structed via the Girsanov substitution of measures (see Liptser

and Shiryayev [12]). If u is a function of (t,xt) and satisfies

a local Lipschitz and a global linear growth condition in the space

variable then a solution of (4) exists in the strong It~ sense.

The optimal stationary control problem can now be formulated

as follows : choose a law u~ € ~ for which the limit

J(u*,x) = u r n  ~ E~ J {4 (x~) + ~~ (u~)
2}dt

exists and does not exceed the average expected total cost

J(u,x) = 
lim 

~ E~ j {~ (x~) + ~ (ut(x
L
~))

2}dt (7)

of starting at place x and exerting control law u for all

x E ] R , u €  *.

k

- —~~~~~~~~~~~
. . -.—

( - ~~ ~~~~~~~~~~~~~~~
_
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A natural subclass of °~s~ for this problem consists of the

markovian laws that give rise to an ergodic solution process (xe)

in (4). Those laws are of the form u
~

(x) = b(x
~
), b: 1k +1k

measurable and such that F’~ (co ) < ~~~, with

F”(x) = I exp{2 I b(z)dz}dy. (8)
J O

It is proved in Gihman and Skorohod [7; §18] that the process

corresponding to such a law u, exists in the strong sense and

admits F”(x)/F”(°°) as a (unique) invariant probability distribution

function, in the sense that

J~~~
cx~ < y~x~ = x)dF”(x) = F~’(y); 0 < t < I , y E ]R  (9)

4~ f 
f(x~)dt —

~~~- f(y) dFU(y); a.s. (P) and L’(E), (10)
0 T-o~~~F (co ) -

~~~

uniformly on bounded x sets.

u r n  E[f(x~)Ix~ = x] = ~~ I f ( y )d F ~’(y) (11)
F (co ) -~~~

for any Borel measurable function f() for which the integrals in

(10), (11) exist , and any x E ]R.

Definition 2: Let ~~~
‘ be the class of laws of the form ut(x) =

b(xt) such that both F’~(oo) < and

J
{$(x) + b2(x))dF”(x) < (12)

- ~~i r1’m— 
— - 

~~~~~~~~~~~~~~~~~~~~~~~~~ 
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are satisfied.

It is seen from (10) that the limit in the performance index

J(u) = lirn E 
J
{$(x~) + ~~. u~ (x ’~)}dt (7)’

exists and is independent of the starting point x € 1k.

LEMMA 1: For the solution v (.) of equation (3) with v (O) = (1,

sgn v
~
(x) = sgn x (13)

v
~ (IxI) ~ ~,

m as lx i + 
~~. (14)

*Proof: Consider d > 0 such that ~(d) = A and note that

(Z
* (X))1% is negative on (O,d), positive on (d,~ ). Since z*I (O ) =

lim (z*(x))I = 0, this implies (z*(x))I > 0 , hence v
~

(x) > 0 , on
x
(0,~). (13) follows by oddness of v (x) in x , while (14) is a

consequence of equation (3) and the corresponding growth condition

on $ (), q.e.d.

Consider now a probability space (c2 ,$T,P; $~) and an

$!~-adapted Brownian Motion process {w
~
; t > O} defined on it.

The stochastic differential equation

d
~t 

= -v
~
(
~t
)dt + dw

~
; t 0

(15)
~O = x

has a strong solution on (
~, ~~P; ~~) because of (B); see

Proposition 2 below. The implicit minimization in (3) suggests that

t
- --

-n—--- ~~~~~~~~~~~~~~~~~~~~~~ L—~ - ~~~~~~~~~~~~~~~~~ ... - - ..._ _- .-- ____ ~~~~~~~~~~~~~~~~~~~~~~~ 
- --
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t > O} achieves the infimum of J(u) in (7)’, u € ~~
‘; in

fact we have the following result:

PROPOSITION 1: The control law u~(x) = -v
~
(xt) is optimal in M~

Proof: First it is checked that u~ € .~~~~~ In fact ,

(X 
* 2 *F*(x) = J exp{-2 J v~ (c)d~}dy = J (z (y)) dy, F (°°) = 1

-~~~ J O  -
~~~

and thus condition (12) follows from

+ ~~ (z*I (x))Z}dx = A *, (16)

which , in turn , is easily obtained from (1) with z,A replaced by

upon multiplying throughout by z~ and integrating over 1k.

Conditions (5) and (6) are also readily verifiable; see (24) below .

To prove optimality of u~ in ~~~‘, consider any law u € ~~~‘

and apply 1t6’s rule to v(x~); taking equation (3) along with

conditions (14), (6) into account , one gets

Ev(4) - v(x) + E J {$ (x~) + .~~~ u~ (x~’)}ds > A~ t. (17)

But u r n  Ev(4) = (F~’(co)~~
1 J v(y)dF~’(y) < by virtue of (11),

so one obtains J(u) > A upon dividing both sides of (17) by t

and passing to the limit as t + ~~ . If u = u~, (17) becomes an

equality and therefore j
- I !

_____ —-~~~ 

. 
;__ i~ r 

. 

— 

I ;

- ;v_(~u._~ ~~~~~~~~~~~~~ -
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J(u*) = lirn E + 
~~ 
v~(~~)}dt = A * . (18 )

So u* is optimal in -~~~~

LEMMA 2: P( l
~~ i < i x+w~ I, t > 0) = 1.

Proof: An easy consequence of (13), Proposition 1 and the Ikeda-

Watanable comparison Theorem [10].

3. A FAMILY OF F I N I T E - H O R I Z O N  CONTROL PROBLEMS

Under the same assumptions and definitions as in Section 2,

consider the problem of finding the optimal law u~ (x); 0 < t < I

in ~ that minimizes the expected total cost

I(x ,t;u) = E~ J
{4 (x~) + 

~~ 
u~ (xU)}dt, 0 < I < T .

The Bellman equation for the value function V(x,t) on 1k x [0,1]

associated with this problem ,

V1 = 
~~~ 
V,~ 

- 
~~ V~ + 

~ (x) = 
~~ 

V~~ + rnin(uV
~ 

+ 
~~) 

+ ~ (x); (x, 1) Elk X (0,1] (19)

V(x,0) 0 ; x€ 1k, (20)

has a unique classical solution which is C2’1 in JR X (0,1],

continuous on IRX [0,TJ and satisfies a polynomial growth

condition in the space variable; see Fleming [4]. It is easily

checked that V(x,t) is an (achievable) lower bound on I(x,t;u)

•i~~ 
—

~~~~
-
~~~~

-
-~~~~~

--- 
----

~~ 
~~~~

-1
~~~~~~~~~~

___ 
~~~~~~~~~~~~~~~~
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and that it is even and convex in x for any I € [O ,T] (for the first claim,

apply it~ s rule to V(x~ , I -t), u € 
~~; 

symmetry follows from uniqueness and

the fact that W(x,t) = V ( -x ,t) is also a solution to (19), (20);

for convexity , see Fleming and Rishel [6], Ex. VI. 9). The

minimization in (19) is achieved for u = -V~, a fact suggesting

that the infiinum of I(x,I;u) is achieved by the process

{n~ ; 0 < t < t} defined through

dn~ = 

~
V
~
(n
~
,T
~
t)dt + dw

~
; 0 < t < I

1 (21)
no =

and that the optimal control law in ‘~~ for the problems on [0,1]

is 
~ 

_V
x(xt,

T
~
t); 0 < t < 1 , x € C [O ,T).

PROPOSITION 2: The stochastic differential equation (21) is strongly

solvable on the probability space (~7,~~ ,P; ~~).

Proof: The symmetry and convexity properties of V(x,I) suggest

that

V (x,t) > 0, on x > 0. (22)
x - -

In what follows we adapt an argument of Fleming [5]. Consider the

expanding sequence of intervals = (-n,n) and the corresponding

sequence of functions 
~n 

€ C~ QR) ; 0 < 
~n 

< 1, ~~(x) = 1 in

0 in ~~~~ The functions f~ (x ,t) = 
~
V
~

(x ,t)
~~
(x) satisfy

both a Lip and a linear growth condition in x, hence the process

___________ ‘.5. . *_ ~~
_ 

~~A 7 ’~~ 
-
~~~~~~~ 

.. A
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0 < t <

= f (nT ’~~It)dt + dw
~
; 0 < t < I

= x E

is well defined in the It~ sense, for all sufficiently large n € IN.

Besides , if m < n, then ~~~ = 0 < t < where

infit < T; In~~
uh i >

t , i~ !n~ ’~~i < n , all 0 ~ t ~ I.

Denote by T the a.s. limit of the increasing sequence I~ and

define T ~t ,n for n large enough and 0 < t < •t
00. We prove

that n~ is defined on the whole of [0,1], i.e. that I = I, a.s.

It is easily seen from (22) that the process ~~~~ = (~
t~n)2

+ 1 - t, 0 < t < t is a nonnegative supermartingale. Therefore ,

P(I < t)  < P( sup q
I~~h1 

> n2) < + 0 as ~0<s<t

any 0 < t < t . Consequently, 1~ = I, a.s.(P); Q.E.D.

4. ASYMPTOTIC BEHAVIOUR OF THE VALUE FUNCTION

In this section we establish the main result of the paper ,

Theorem 1, which gives an asymptotic relationship between the

optimal expected performance V(x,t) on [0,t] and the optimal

steady-state performance rate A *. This relationship is used to

es tabl ish the s tochas tic represen tation (2) for A * (Theorem 2) and

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~ 
-

~~ T ~~~~~~~
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to prove the optimality in ‘~~~ of the law u* for the stationary

problem (Theorem 3).

LEMMA 3: V(x ,I) < v(x) + A *I; (X ,t) Elk >~ [O,T], any T > 0.

Proof: The stationary optimal law u~(x) = -v
~

(x
~
) is suboptimal

for the finite-horizon problem ; we have therefore from equation (19):

V1 < 
~~

- V,~ + 
~~

- v~ 
- v

~
V
~ 

+ ~ (x) ; (X ,T) Elk X (0,TJ .

Consequently, the function

W(x ,T) v(x) + A *t - V(x,t)

satisfies the differential inequality

> .

~~

- W~~ 
- 

~~~~ (X ,t) € JR ‘~ (0,T]

along with the initial condition W(x,0) = v(x); x € JR.

An application of 1t6’s rule to W(
~t,

T
~
t) gives the stochastic

differential inequality dW(
~t,

t
~
t) < W

~
(
~t,

t_t)dwt, which implies

that {Wt
~ t,t~

t); 0 < t < t) is a supermartinglae since, due to

the polynomial growth condition of W~ in x and Lemma 2, the

process

{1

t
wx(~s,

t~s)dw s; o ~ t 
~

— U —‘— ~~~~~._.— _._•__ .—. — ~~~~~
-.--—--.—

~~~
,-- -

~~~~~~
,,. —--——

‘I- — ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ —=--- .—-—---—-------— - - —.---——----———
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is a square-integrable martingale.

Introduce the sequence of stopping times

I inf {0 < t < 1; I~~i ~ (23)
1, ~f < n , all 0 < t < 1.

An application of Its’s rule to ~~~~~~ & > 1 an integer , gives

~~~ = ~~
2(&-1)[ (2& l) - 2

~t
v
~
(
~t

)Jdt + 2&
~~~~

1dwt.

It is easy to check that for each £ > 1 there exists a~ > 0 such

that £x2~~
’
~~~[(2R.-1) 

- 2xv
~
(x)] < a~ , x E lk. So the process

+ a~~(T-t) ; 0 < t < I is a nonnegative supermartingale and

consequently , for any £ > 1:

sup ~~~ < x2L -‘. a~
t (24)

0<t<I

x2+a I
P(T~ < I) = P( sup I~~l > n) < 

2~ 
(25)

O<t<t 11

Therefore, T~ ~~
- T, a.s. as n + ~~~, and

W(x ,t) > EW (
~T~~

T
~
Tn) ~~~ 

EW(~1,0) = Ev(~1) > 0,

because the f amily of rand om variable s W (
~~

,t-t); 0 < t < t} is

unifo rmly integrable : sup EW2(~t,
t
~
t) < Const(T+ sup E~~

k) <

0~t~t O~t~t

by (24) ,  some k > 1. Q.E.D.
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PROPOSITION 3: V
~ (Ix l , r) < v~(~x~); (x,t) E lk  ~ [0 ,1], any T > 0.

Proof: It is readily verified from equations (3), (19) by

differentiation that the function :

M(x ,t) 
~ 
v~ (x) - V

~
(x ,t)

satisfies the equation :

~ 
M~~ - v

~
M
~ 

- V
~~

M; (x ,r) € JR ~ (0,1]

along with the initial condition :

I.
M(x,0) = v (x); x Elk.

Note also that:

M(0,t )  = 0; 0 < I < T.

It follows by 1 t ’ s rule that

d[M(~~~
t-t) .ex~

{ 
f v ~~c~s ~t~s)d~~

J 
= e~~

f 
J

t
V~~(~5 ~~~~~~~~~~~~~~~~ (26)

Take x > 0; the result follows by symmetry for x < 0 while it is

obvious for x = 0. By the same argument as in Lemma 3, the

integra l of the right hand side of (26) over (0,t] is a square-

integrable martingale on 0 c t < t , so that

~~~~~~~~~~~~~~~~ - ~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

_,-..- 
~
— _uI__ 

—w— -~~ — 
~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

- — ---I-
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v
~
(x) - V

~
(x,I) E[(~R

).e
~4- J0~~~t t)4] (27)

where

R = inf{O < t < ‘r; = 01

= T , ~~ > 0 for all 0 < t < I .

The result follows from (27).

COROLLARY 1: P(IE t I < 1n~i < l x+wtl; 0 < t < 1) = 1.

Follows from the Ikeda-Watanable co~çarison Theorem [10], along with

equations (15) and (21).

COROLLARY 2: lim V,~ (x, I) = ~~ (x), uniformly on bounded x- sets.

Proof: From (27) we get for x > 0:

0 ~ v (x) - V (x,1) <Ev 
~~~ 

= 
( v (~1)dP.X X X J {R=1} X

Due to Corollary 1:

P(R — t) < P(x+w
~ > 0, all 0 < t < t ) — 2~(xr

4
~
2) - 1 0 as t +

uniformly on bounded x-sets ($(.) is tie cumulative normal distribution

function) . On the other hand, we get from (11), (16) that

_ _ _ _ _  

I ,
_ _ _ _ _ _  _ _  

—
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _  

~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
—— - ---—- ---.-- 

.—5

— 
- — -
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u r n  Ev
~ Rt) 

= J v y ~~ z * cy~~
2 oy < 2X~~,

therefore su~ Ev~ (~1) < c < ~~ , which proves uniform in tegrabil i ty

of the family {v
~
(
~1

); I > 01 , hence uniform absolute continuity ,

hence the result.

REMARK: Note that

dI~ t I = -v
~ (l~~~

i)dt + d
~t 

+

(28)
= lx i

where &~ is an increasing process that off 
~~~~ 

= 01 (the

local time spent by the ~ process at zero), and

J0~
g’~ ~5

dw5 is a new Brownian Motion on (~ , ~~,P; ~~).

For a discussion of equation of the form (28) see Gihman and

Skor ohod (7, §23] as well as McKean (l3;~~ 3.8, 3.9]. Application

of the generalized It~ formula (Meyer [14, p. 365]) to

M (I
~ t i ,t-t) yields

1(I~t l,t.t) = V~~(I~ t l , t_ t) M( l~ t I , t_t)dt + M~(I~ t l , T_ t) dLt +

= V,~~(I~ t i ,T_ t)M(i~tI ,t-t)dt + M
~(I~ti ,t_ t ) d~t ,

because M~(IF~
,
~I,t -t )  = 0 on {t;

~ t 
— 0), i.e. where dLt $ 0.

A new application of It&’s rule gives (26) with 
~~ 

replaced by

so finally if

I

- , ~~~~~~~~~~~~~~ 
.

_____ - 

~~~~~~ 
TTIT
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Rt 
= inf(t < ~ < I; = O }

= I, if ~‘ 0 for all t < s < 1- ,

we get

Vx(i~tI) 
- V

~
()
~ti,T~

t) = ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ (27)’

THEOREM 1: lim V(x ,T) 
= A~ , uniformly on bounded x-sets .I-

Proof: By Corollary 1 and convexity of 4’,V in x:

V(x ,I) = E I~”~ 
+ ~~ V~(n~,t-t)} > E + 

~~ 
V
~~~t,

t
~
t)}dt.

Therefore ,

E 
~~~~~~~ 

+ 
~ 
v~(~~) dt - 

~~~~~ J
E{v

~~ t) 
- \
~~~t,

t t)}dt

(29)

< V(x,t) 
< •~~

* 
+ 

v)~~

The first term on the left hand side of (29) converges to as

t + ~~ , uniformly on bounded x-sets. For the integrand of the second

term we have the estimate

- V
~
(F
~ ,r~t)J < E(v~((~t v

~
(IE i~ I ) J _ J  ~~~~~~~~~~~~~~ (30)

~~~~~~~~~~~~~~~~~~~~~~~~~~~
_______ - -   ~~~~~~~~~~~~~~~~~~~~~~~~~~~ - -~~~~~ — -- - —- - -  

.
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where Proposition 3, relation (27)’ and the convexity of V(,t)

have been taken into account. Splitting the integral in (30) over

the events (T~ = t} and {T~ < t}, T~ as in (23), we get the

estimate

v2(n) P(T = R = I) + J v (~u I )v (I~1I)dP.X fl t {1 <1} x t x
n

Now )

P(Tn = R t 
= I) = P(l~~l 

+ - - tt 
- 

I~
vx(l~u

l)du > 0 ,

< n; all t < S < t)

< P(n + - > 0, all t < s < 1) = 2~(n(1-t)
”2) - 1 < 2n(21T(t-t))~~

”2 .

Therefore ,

E J{v~
(F
~t

) - V
~(~t,

t
~
t)}dt < const.t

l/’2
n
2m+1

(31)

+ 

JT~<tJ~ 
Jv x(I~tI)dt}vx(~~t

I)dP.

For the choice t = ~~~~ the first term on the right hand side

of (31) tends to zero as n ~~ , while (25’ with £ 2(m+l) gives
4m+3P(T~ < n ) -‘- 0 as n -

~ ~~ , un i formly on bounded x-sets.  On the

other hand, the family of random variables

{~ J v x (I~t l)dt .v x (I~t i); I > is uniformly integrable;

[
___ ::~~~~~~~~~~~~

-- 
~~~~~~~~~~~~~~~~~~~ 

- - 
-

___J_
____
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indeed , we have by the Cauchy inequality:

~~~~~~ EE
(Ic t I)J v (I

~ t I)d
~~ 

< 4 E Iv~ (I
~ t I)dt

.Ev
~
(I
~ t I) < c~ <~~~~

where c is an upper bound on sup Ev~(~1) (Corollary 2).
1>0

By uniform absolute continuity the second term on the right

Fand side of (31) also converges to zero as T = ~4m+3 + ~~ , uni-

formly on bounded x-sets. Therefore , both left and right hand

sides of the double inequality (29) converge to A * as I + ~~ ,

uniformly on bounded x-sets; Q.E.D.

EXAMPLE: In the case ‘P(x) = x2, we have A * =

z(x) = const. exp(- 
~~

— ) ,

v(x) = ~~~~~~ V(x , I) = ( a (t ) x 2 
+

with a(I) = tan (rI~). The results of the present section

are readily verified .

*THEOREM 2: The principal eigenvalue A of the eigenvalue problem

(1) admits the limiting-stochastic representation (2), uniformly

on bounded x- sets.

Proof: The change of variables m = exp(-V) transforms

equation (19) into the linear equation with potential term 

—
—~~~~~~~~~~~~~~~ -— — _.p 

~ ~~~ 

— -

~
.‘ ~~~~~~~~~~~~~ - ~ I ;

- ~~~~~ 
- -. .

1— 1 ~~~~~~~~~~~~ - -_-



19

= mxx 
- 4 (x)m; (X ,T) El k  X (0,11

m(x,0) = 1 ; x Elk.

It is checked that

{m
(x+wt,t~t).exp

{
~J

t
~ (x÷w )dsj ; 0 ~ t ~

is a square-integrable martingale , hence the so called Feynman-Kac

formula:

m(x,t) = E[exP{-J~~
(x+ws)ds}].

(2) follows from the latter and Theorem 1.

THEOREM 3: The control law u~(x) = -v
~
(xt); x € C[O ,~ ), is optimal

in ~ for the stationary control problem.

Proof: Apply It8’s rule to V(x~ ,I-t), any u € ~ and take

expectations to obtain by virtue of conditions (5), (6) the

inequality

V(x,T) < E~ J {$(x~) + ~~ u~(x
U)}dt.

Dividing by t and letting I + we get

< B 
J
{+(x~) + ~~~. u~(x’5}dt — J(u,x), any x Elk.

-

~~~~~~~~~~ ~,::~::: ‘ _ - -  

~~~~~~~~ - • ~~~ ~~~~~~~~~

- - . - 
— -

..
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Since A * = J(u*) the optimality of u~ follows .

Acknowledgement: The author is indebted to Professor W.H. Fleming

for a number of helpful discussions and suggestions .
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